Consensus Multisensor Data Fusion Algorithm Based on Dynamic Hierarchical Clustering Analysis
نویسندگان
چکیده
منابع مشابه
Entropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملA Data Fusion Algorithm for Multisensor Systems
Data fusion techniques are used in many tracking and surveillance systems as well as in applications where reliability is of a main concern. One solution for design of such systems is to employ a number of sensors (maybe of different types) and to fuse the information obtained from all these sensors on a central processor. Past attempts to solve this problem required an organization of a feedba...
متن کاملA New Method for Multisensor Data Fusion Based on Wavelet Transform in a Chemical Plant
This paper presents a new multi-sensor data fusion method based on the combination of wavelet transform (WT) and extended Kalman filter (EKF). Input data are first filtered by a wavelet transform via Daubechies wavelet “db4” functions and the filtered data are then fused based on variance weights in terms of minimum mean square error. The fused data are finally treated by extended Kalman filter...
متن کاملDynamic Hierarchical Compact Clustering Algorithm
In this paper we introduce a general framework for hierarchical clustering that deals with both static and dynamic data sets. From this framework, different hierarchical agglomerative algorithms can be obtained, by specifying an inter-cluster similarity measure, a subgraph of the β-similarity graph, and a cover algorithm. A new clustering algorithm called Hierarchical Compact Algorithm and its ...
متن کاملAn Incremental Hierarchical Data Clustering Algorithm Based on Gravity Theory
One of the main challenges in the design of modern clustering algorithms is that, in many applications, new data sets are continuously added into an already huge database. As a result, it is impractical to carry out data clustering from scratch whenever there are new data instances added into the database. One way to tackle this challenge is to incorporate a clustering algorithm that operates i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Engineering and Technology Research
سال: 2018
ISSN: 2475-885X
DOI: 10.12783/dtetr/ecar2018/26368